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The third-order asymptotic aberration coefficients of round electrostatic lenses are
reformulated in terms of the coordinates formed by the projections of the
asymptotic incident and fipnal rays onto the reference plane of the lens. In this
formulation, all aberration coefficients are finite for all lenses, in contrast to the
formulation in terms of coordinates projected onto the focal planes of the lenses,
where all of the coefficients become infinite in the limit of very weak lenses and
for certain strong lenses. Equations for the six third-order aberration coefficients
are derived in the form of integrals involving derivatives of the axial potential no
higher than the second. Using these equations and previously calculated potentials
and first-order trajectories, we have computed the six aberration coefficients for
the accelerating and decelerating two-tube electrostatic lens for voltage ratios from
1.1 to 10000. The results are believed accurate to better than 0.2%.

INTRODUCTION

In previous papers'? we formulated the third-order asymp-
totic aberration coefficients?® of round electrostatic lenses in
terms of coordinates formed by the projections of the as-
ymptotic incident and final rays onto the focal planes of the
lens, derived integrals for the six third-order aberration
coefficients, and presented results for the two-tube electro-
static lens for voltage ratios from 1.1 to 10 000. For the
purpose of computer calculations of arbitrary systems of
two-tube electrostatic lenses, these coefficients are unsuit-
able since they become infinite in the limit of very weak
lenses and for certain strong lenses, causing difficulty in
interpolating between the calculated coefficients. This be-
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Fic. 1. Definition of the midplane coordinates of asymptotic rays.
Note that ;= tanf), @;=tang,, and that in the perpendicular plane we
use ¥y, 71 and ¥z, Y2-
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havior is a direct result of using ray coordinates projected
onto the focal planes, since these coordinates also become
infinite as the focal planes approach infinity. Hence a new
formulation is desirable.

Such a new formulation of the aberration coefficients
obviously requires that ray coordinates be used in planes
near the lens. The most obvious and convenient choice is to
use coordinates formed by the projections of the asymptotic
incident and final rays onto the reference plane of the lens
and for the two-tube lens, a plane midway between the
two tubes of the lens. (Note that the reference plane could
be at any convenient location. It is essential, however, that
the first-order and third-order properties be expressed at
the same plane.) This choice also allows us to make use of
our formulation of the first-order properties of the electro-
static lens in terms of the same coordinates and of our
calculations of these properties for the two-tube lens.*

In this paper we derive integrals for the new aberration
coefficients and report results for the two-tube electrostatic
lens at voltage ratios from 1.1 to 10 000.

DEFINITION OF THE NEW ABERRATION
COEFFICIENTS

The incident asymptotic ray is specified by its slopes
ay, v, and by its coordinates xy, y; when projected onto the
reference plane of the lens (the midplane for the two-tube
lens, see Fig. 1). Similarly, the emerging asymptotic ray
is specified by its slopes a2, v2 and by its coordinates x», y2
when projected onto the reference plane of the lens. By
asymptotic rays we mean rays outside of the effective
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72 DiChio, Natali, and Kuyatt: Aberrations of electrostatic lenses 72

field of the lens; hence real objects must be outside of the
lens field, otherwise, objects must be virtual. This is no real
limitation since real objects cannot be placed in the field of
an electrostatic lens without changing the properties of the
lens.

Defining the dimensionless quantities X,=x,/D, ¥}
=y1/D, and Z;=2/D, where D is the diameter of the lens,
the coordinates are grouped as system invariants

ri=X 4V
=X+ Y11

si=ar’ v
(1)
11=Xry1—Vaian

The coefficient of »; vanishes for electrostatic lenses.

Again following Hawkes®7 and our previous treatment!
of aberration coefficients between the focal planes, the third-
order properties are derived from a characteristic function
V# which is second order in 7y, s1, #1

My My Ms\[/n
Ve=(ris u)l O My My s (2)
0 0 M33 AN

We again deviate from Hawkes’ formulation by defining
Vr and the M,; as dimensionless quantities. To derive the
aberration equations, the following first-order trajectories
G and H are required

Gi(Z2)=1 H(Z)=Z

, , 3)

G/(Z)=0 H,(Z)=1.
The subscript 1 indicates projected values for the asymp-
totic incoming rays at the reference plane. Recalling* that
the first-order properties of the lens in matrix form are

given by
X, a1 ap\/X:
= , 4)
as a1 (2/ \ay
where a11d20—a12621= (¢1/¢2)}, and ¢1, ¢, are the asymp-
totic initial and final potentials of the lens, we find that the

projected values for the asymptotic outgoing first-order
rays are

Ge=an Hy=a

®)

I3 !
Gy =ay H)=as.

The third-order (lateral) aberration equations are obtained
from

Ve Vg
AX,=H, —Gy —1H 01 (@2 +71Y),
1 day
(6)
oV Ve
Aas=Hy/ -Gy’ P -—%Hz’al(alz'i")’l?‘)‘i‘%m (azz+’Y22)x
1 ay

where the quantities a,, v, are first-order projected values,
and equations for AY,, Ay, are obtained by replacing X;,
ai, ap with ¥y, i1, v2. Substituting the appropriate values
of Gy, Gy, H,, Hy' from Egs. (5) and the first-order values
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of X, as from Eq. (4), we find that to the third order

aVy oV
Xo=anX1+a01+ars —a —%111201151,
a 1 (9(]{1
Vg Ve (7)
=821 X 11 G001+ a9 —aay —%dzzmsl
X1 6011

+% (02 1X1+022¢¥1) (021271+ 2021022141‘*'022251) .

From the definition of ¥V we have

AV
™ =4M X114+ 2M 15X 1514+ 2M 13X 11+ M 13031
1
+M 230151+ 2M 33034,
Vg
3 =M X1r1+Mos X 1514+2M 55X 1001+ 2M o017y
(23]

+4M 90151+ 2M 9300145

Equations (7) and (8) could now be combined to give X, aa
directly in terms of Xy, e, 71, 51, #1 but calculations are
simplified if Eqgs. (7) and (8) are computed separately.

DERIVATION OF THE ABERRATION INTEGRALS

Integrals for the quantities F;; are obtained from the
dimensionless characteristic function

1
Vp=—o / mWdz, ©)
1t

where m® are the fourth-order terms in the expansion of
m=g¢}(14+ X2+ V)4, (10)

and ¢(Z2) is the axial potential distribution. Obtaining m®
from Grivet,® we have

1 1 iv 77\ 2
Ve=— ¢%‘__..[¢__(f_) ](X2+Y2)2
1} 128L¢ \¢

4

g
—;—6-—(X2+Y2><a2+72>—%<a2+vz>2}dz, (1)
¢

where ¢/, ¢!V are second and fourth derivatives of ¢ with
respect to Z. Note also that because we are calculating
asymptotic properties at the reference plane, the integrals
in Egs. (9) and (11) are of the form

L e

where the first and last integral on the right involve only
straightline asymptotic trajectories.

The integral in Eq. (11) must be evaluated for a general
first-order trajectory, which may be expressed in terms of
the trajectories G, H as follows

X=X,G}+aH
Y=Y.:G4+vH
a=XG'+aH'
v =ViG+nll.

(13)
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Substituting Eqgs. (13) into Eq. (11), we have

1 1 el 7¢”\2
Ve=— ¢*<‘——[———(——) ](r1G2+2u1GH+s1H2)2
éit 128L ¢ ¢

1 ¢n
—I— ——(7162+2M1GH+51H2) (rlG’z—I-ZulG'H’ +51H,2)
6 ¢

—%(rlG’2+2u1G’H’+s1H’2)2}dZ. (14)

Before identifying the aberration coefficients the asymp-
totic contributions to Vr will be evaluated. Assume that
the lens field is bounded by Z=L, on the left and Z=L,
on the right. Then we can take

Ly Ly 0
[=[+[+]. (15)

0 Iy L
Note that the derivatives of ¢ are zero in the first and last
integral since the potential is constant outside of the lens

field. Using Egs. (5) and (3) to simplify the first and last
integral, we obtain

1 Ly b2 4
Ve=—o / ¢*{ }dZ—%Llslz‘i-%Lz(—)
4’14} L

d1
X (a2i?r14-2a0102001+a25%51)2.  (16)

The term in braces is the same as in Eq. (14).

The aberration coefficients F;; are now identified as
appropriate terms of Eq. (16) by comparison with Eq. (2).
They are identical in form with the equations we obtained
previously for the asymptotic aberrations expressed be-
tween the focal planes [Eqgs. (10) of Ref. 1] with the
exception of the integrated terms, so we will not write them
down here. Instead we will give equations for the aberration
coefficients which have been transformed so that they con-
tain no derivatives of the axial potential higher than the
second order. The transformations are made exactly as in
Ref. 1

1 [l
My, - f HKGHHLGG' +MGG?+NGdZ
¢/,

1/¢2\}
+—(——> Lsaay!,
b1
1 Ls
M, =—; S 2KGH*+L(GCGHH'+GG'H?)
¢ J 1,
+M(AGG'HH' —G*H"*—G"?H?)+2NG"*H’ ¥ldZ
1/¢2\}
+—(—‘) Lyas1%a22,
4\¢1

1l
M“=_; f H[4KG*H+L(G’H'+3G*G’'H)
o1 J 1,

+2M(G*G’H'+GG*H)+4NG"*H |dZ

17¢2\}
+—<—) L1a2%ass,
2\¢,
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(7

1 ke
Myp=— f ¢*(KH*+LH*H'+MH*H"*+-NH'*)dZ —} L,
o J i,

17¢2\}
+—<—‘) L2(122‘,
8\¢1

1 L
My=— / W 4KGH+L(3GHH'+G' HY)
¢’ J 1L,

+2M (GHH"*+-G'H*H')+4ANG'H”®|dZ

1/¢a\}
+-<-—) L2049,
2\¢;
1 Ly
M= — S 4KGH2+2L(G* HH' +GG'H?)
b1 Ly
+2M (G*H"*+G*H?)+4NG"*H 7dZ
1/¢a\}
+—(—) Loasass?,
2\¢1
where
1 ¢H¢12 ¢Nz
K=——(3 —10—>,
512 &? @®?
3 ¢II¢I
T (18)
1 ¢I/
324
N=-%.

As in Ref. 2, there is a simple relationship, called Petzval’s
theorem, between M; and M;:
¢1,) Ly ¢//
My — M= —— —dZ. (19)
8 Ju ¢i

ABERRATION COEFFICIENTS FOR AN
INVERTED LENS

Assuming now that we have carried out the calculation
of the aberration coefficients M; for an accelerating lens,
we would like to obtain the aberration coefficients of the
inverted (decelerating) lens without the necessity of re-
evaluating the integrals of Eqs. (17). In the case of asymp-
totic aberration coefficients between the focal planes, there
is a very simple relationship between the coefficients of an
accelerating lens and those of the corresponding decelerating
lens, and vice versa. In the present formulation, the rela-
tionship is more complicated.

To derive the relationships between the aberration co-
efficients of a given lens and those of the inverted lens, we
start with Eqs. (17) rewritten for the inverted lens. For
example, the first aberration coefficient of the inverted lens
is given by

—L1

1
Muyi=— P*HK*GHHL*GG'+ M*G* G+ N*G')dZ*
# 1/é1\t
-—(—-) Libat, (20)
8\¢»

where Z*=—Z, ¢*, K*, L*, M*, N* are for the inverted
lens, by is a matrix element of the inverted lens, and G,
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G', H, H' are trajectories defined as
Gi(Z%) =1 1(Z*%)=
(Z% H(Z%=2 an
G/ (Z¥)=0 H/(Z*) =1,

where the subscript 1 again indicates projected values for
the incoming rays of the inverted lens at the reference plane.
Equation (20) is now transformed to be a function of Z,

1 s . - _
M ui=—% / HHKG — LG’ +MG* Q'+ NG'Y)dZ
¢
2 L 1 ¢1 '
——(—) Libet.  (22)
8\¢s
Finally, we make the substitutions

2 i
G= ('d"") (dzzG—anH),

1

_ [\
H=(;) (01G—and), (23)

$2\}
b= (“—) @21,
b1

expand the integrand, and collect terms to identify con-
tributions from the integrals of Eq. (17). [Actually this
process was performed on the simpler integrals analogous
to Egs. (10) of Ref. 2.7 After much tedious but elementary
algebra, we arrive at

A
]M'lll = (_) [0224M11 —~(121(1223M13+02120222 (M12+M33)
1
— a1’ @22 M 93+aa1*M. 22],

[P2\}
Myi= (—) [26122699* M 11— 019095 (G11020+ 012021 ) M 15

¢

+ (01120222+01220212)M 12+261181202185:M 5
—011021(011022+a 12021)M23+20112¢1212M22],
o\
Migi={ — ) [401202:* M 11— G25* (311822 +3012021) M 15
b1
+2a51a2, (011022+012¢121) (M wt+M 33) — a2’ (34111022

+d12021)M 234031182 M 22], (24)

da\!
Mai= (—) [dlz‘Mu —0114123M13+Guza122(M12+M33)

é1

—a1’ 019 M 95+651* M 32 ],
(e}
Myi= (¢—) [4a15° 020 M 11 —a12? (3a11025+01202) M 15
1
+2611013 (011022+012421) (M 10+Myg) —an? (Gnazz
+3612621) M 23+4a1° 02, M 22 ],

da\}
Mi= (—) (401220202 M 11— 2812095 (011822+ 312621) M 13

b1
+4811012621029M 15+ (audzz"i‘axzazl)’M 33— 2611821

X (811029 012021) M 35+4611262:° M 55 .
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TRANSFORMATIONS BETWEEN MIDPLANE AND
FOCAL-PLANE ABERRATION COEFFICIENTS

Finally, we wish to derive the transformations between
the midplane and focal-plane aberration coefficients. We
begin with Egs. (7) and (8). Denoting by ¢ and 5 the
position coordinates in the initial focal plane, and by R,
S1, U1 the corresponding system invariants, we make the
substitutions

1
X = ——(t1+anay),

a1

1
Vi= —-(n1+alzaz),

az

1
71 =—2(R1+2a22l]1+022251)7

[£2]
‘ (25)
S1 "—‘S1,

1
= ——(U14a22S1),

a1

11822 — Q12821 (1331
XZ =% —Q2.
a21 @21

After considerable algebraic manipulation, we can identify
the focal plane aberration coefficients, F;;, which have the
following form?:

—~ b =ayt4F 51 R+ 2F 126514 2F 136. U4 Frsoau Ry
+ (Fzs"%)alsﬁ" 2F330£1Ul,

(26)
ay= —E+ (Fis—3) E1R1+FostiS142F 554, Uy
+2F 1900 R1+4F 0001814 2F 2301 Uy
We find that
1 1 a1
Fy=—-Myy——-,
as 8 411820 — 12021
2a492 1 (127}
Fpp=— My——M+—Ms,
as® a21 as’
4(122 1
Fyy=——Mu+—M;,,
as® 123}
Goo* ass? ag®
Fopo= —— My ——Mp+—Mis—auMs+aMay @7
as® as; as?
as?
———M3; —}azz,
az21
4aq9° 2a4, 3az? 2829
Fog= 1n M 12 Mis+M o3 —~——Mgs,
as® a2 as? an
4(1222 2022 1
Fay=— My+——Mi——M3s.
az® G2® @21

The Egs. (27) can easily be solved to give the M’s in terms
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TaBLE I. Accelerating midplane aberration coefficients.

b2/P1 Mn My, Mis M M2 Mss

1.1 —8.3949 —4 —4.3653 —4 1.9770 —5 —2.3146 —5 5.8111 -3 5.6689 —4

1.3 —6.0764 —3 —3.2258 -3 3.8731 —4 —1.6499 —4 1.5435 -2 4.0090 -3

1.5 —1.3908 —2 —7.5334 -3 1.3521 —3 —3.8579 —4 2.3248 -2 9.0072 —3

2 —3.6938 —2 —2.1020 -2 6.0610 —3 —1.1237 -3 3.8312 —2 2.3146 -2

5 —1.3304 —1 —9.8097 —2 5.5014 —2 —7.4219 -3 9.1413 —2 7.5737 =2

10 —1.8410 —1 —1.8343 —1 1.3179 —1 —1.9427 —2 1.5373 —1 8.6976 —2

20 —2.0751 —1 —2.9037 —1 2.5079 —1 —4.2714 -2 2.5588 —1 4.2970 -2

40 —2.2180 —1 —4.1847 —1 41727 —1 —8.3468 —2 4.1531 —1 —6.9239 —2

100 —2.4427 —1 —6.1032 —1 6.7909 —1 —1.7781 —1 7.3195 —1 —3.0717 —1

250 —2.6101 —1 —8.1421 —1 9.2306 —1 —3.4617 —1 1.1988 —6.1388 —1

500 —2.6581 —1 —9.8383 —1 1.0883 —5.5409 —1 1.7028 —8.9974 —1
1000 —2.6829 —1 —1.1814 1.2577 —8.6263 —1 2.3904 —1.2567
2000 —2.7335 —1 —1.4169 1.4490 —1.2977 3.2967 —1.6995
5000 —2.8140 —1 —1.7703 1.7139 —2.0968 4.8177 —~2.3812
6600 —2.8353 —1 —1.8841 1.7928 —2.3961 5.3501 —2.6033
9000 —2.8555 —1 —2.0146 1.8791 —2.7668 5.9868 —2.8589
. 10000 —2.8616 —1 —2.0399 1.9081 —2.9021 6.2137 —2.9478

of the F’s. We find
M= —0213F11*,
My = —26282°F1,* —anF 194a2182F 15,

M 3= —4an2aF, 1*+0212F13,

1
M= ——( — 022 F 11* — 099’ F 12— 099°F 13— F a9+ @20F 23 (28)
@21
—a292F3; —%022)-

M= —4a2°F* -“2022F12+30222F13+F23—ZdzzFaa,
M 35= —40a21045*F 11*+2021890F 13— a F 33y

where

1 aun
Fy*=Fjy+4+ ———rrnr,
8 311829 — 12891

EVALUATION OF THE ABERRATION INTEGRALS

The aberration integrals of Eqgs. (17) were evaluated
for the two-tube electrostatic lens for voltage ratios (ac-
celerating) from 1.1 to 10 000. Potentials were calculated
with a precision of 1 in 105 using overrelaxation on a 593X 81
network covering the entire lens. Trajectories were calcu-
lated using the predictor—corrector method. Details of these
methods have already been given® together with applica-

TaBLE II.  Decelerating midplane aberration coefficients.

tions to first-order focal properties’®*? and matrix elements®®
of the two-tube electrostatic lens.

Paraxial trajectories G were already available from the
previous calculations,’® needing only to be suitably scaled
to satisfy Eqs. (3). New paraxial trajectories H were calcu-
lated for use in the aberration integrals. Axial potentials
were calculated using five-point Lagrange interpolation
between the five closest mesh points. Derivatives of the
axial potential were obtained from the interpolating
polynomial.

The integrals giving the six aberration coefficients were
calculated using the Romberg iterative method.”* This
method uses “‘cautious extrapolation” from results on two
or more intervals and gives error estimates. In our calcula-
tions the integrals were required to converge to a precision
of better than 0.19, which necessitated division of each
mesh interval into 16 points (Az=D/1080, where D is the
diameter of the lens.)

RESULTS AND DISCUSSION

Results for the six aberration coefficients for accelerating
lenses with voltage ratios from 1.1 to 10000 are given in
Table 1. Coefficients for decelerating lenses were calculated
from Eqgs. (24) using matrix elements from Ref. 4, and are
given in Table II. The behavior of the aberration coeffi-

1/db2 My Myl Mgt Mot M Mg
1.1 —8.8043 —4 —4.4885 —4 —2.1425 -5 —2.4703 -5 —6.0943 —3 6.1250 —4
1.3 —6.9291 —3 —3.4824 —3 —4.8291 —4 —1.9726 —4 —1.7581 =2 49622 -3
1.5 —1.7050 —2 —8.4757 =3 —1.9026 —3 —35.0736 —4 —2.8360 —2 1.2533 —2
2 —5.2522 =2 —2.5661 —2 —1.094 —2 —1.7722 -3 —5.3074 -2 4.0863 —2
5 —3.0814 —1 —1.5556 —1 —2.1707 —1 —1.8009 —2 —1.5398 —1 2.9694 —1
10 —5.5709 —1 —3.8149 —1 —8.5577 —1 —5.3304 —2 —2.0507 —1 6.7221 —1
20 —4.6223 —1 —8.9167 —1 —2.1548 —1.1104 —1 —1.7451 —1 1.0060
40 6.9898 —1 —1.9426 —3.3604 —1.8734 —1 —1.7552 —1 9.7016 —1
100 4.4055 —3.9785 —5.0463 —3.7221 —1 —6.5072 —1 1.1780
250 7.1213 —4.8642 1.0740 —6.9603 —1 —2.6028 —1 6.3130
500 4.3664 —4.3811 1.8189 +1 —5.6415 —1 3.8092 1.5118 +1
1000 —2.9666 —6.1749 1.5126 +1 92702 —1 1.1801 +1 2.2638 +1
2000 —1.1251 +1 —1.4773 +1 3.1883 4.4656 1.6984 41 2.1184 +1
5000 —2.2134 +1 —3.3588 +1 —3,3695 9.9183 —1.0928 —1 1.4794 +1
6600 —2.6876 +1 —3.7786 +1 —3.4122 1.0637 +1 —1.1658 41 1.9056 +1
9000 —3.3131 41 —4.0159 +1 —7.5868 1.0452 +1 —2.6162 +1 3.0692 +1
10 000 —3.5285 +1 —4.0422 41 —1.0967 +1 1.0067 +1 —3.0902 +1 3.6334 41
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76 DiChio, Natali, and Kuyati: Aberrations of electrostatic lenses

cients as a function of the voltage ratio is shown in Fig. 2.
For accelerating lenses the coefficients vary more smoothly
than for decelerating lenses, although My, and My; show
some structure. Because of the strong cancellations which
occur in the calculation of M3t at a voltage ratio of 6600,
the pronounced structure in this region may not be real.

There is no definitive way to estimate the accuracy of
the aberration coefficients and no previous data for direct
comparison. The axial potentials, first-order trajectories
and matrix elements are believed to be accurate to better
than 0.19,,*" and as discussed above, the integrals were
evaluated to a precision of better than 0.19). The precision
of the calculations can be demonstrated by testing our
values against Petzval’s theorem, Eq. (19). For all lenses,
both accelerating and decelerating, this relation is satisfied
to an accuracy of better than about 0.049, We believe
that the numerical calculation of derivatives of the axial
potential introduces errors less than 0.19,, because our
previous calculation!* of focal-plane aberration coefficients
using two forms of the aberration integrals gave agreement
to better than 0.19,. We believe that a conservative esti-
mate of the accuracy of the midplane aberration coefficients
is 0.2%, and that they are sufficiently accurate for any
practical calculations.

A further test of precision has been made by using Egs.
(27) to calculate the focal-plane aberration coefficients from
the midplane aberration coefficients. The agreement is
typically much better than 0.019 except for isolated values
at voltage ratios of 100 and 250 where it is better than
0.3%, and is obtained using both the accelerating and
decelerating coefficients. It is interesting to note that con-
verting focal-plane aberration coefficients to midplane aber-
ration coefficients with Egs. (28) generally gives less ac-
curacy, particularly in the weak and very strong lenses,
because of strong cancellations which occur. Thus the mid-
plane aberration coefficients have the additional advantage
of being more suitable for calculating other aberration
coefficients.

From the complete set of third-order aberration coefh-
cients which we have presented here for the two-tube
electrostatic lens, it is possible to calculate the position and
slope to third-order of the exit trajectory which corresponds
to any incident ray. Since skew trajectories are included,
it would be possible to calculate spot diagrams in analogy
with similar calculations in light optics.!® Furthermore, the
coefficients are in a form which is ideal for the calculation
of aberrations of lens systems, and are sufficiently well-
behaved for convenient numerical representation for com-
puter calculations.

The derivation of equations to calculate the more usual
coefficients of spherical aberration, coma, astigmatism,
curvature of field, and distortion from the midplane aberra-
tion coefficients will be the subject of a future paper. Similar
equations for the focal-plane aberration coefficients have
been given by Verster'® and Hawkes.®

Finally, we have presented a new set of aberration inte-
grals with which it is possible to calculate all of the aberra-
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tions of an electrostatic lens, given only the axial potential
and two first-order trajectories. Since the new aberration
coefficients have been shown to be preferable to any previ-
ous coefficients, it is hoped that the availability of these
integrals will encourage similar calculations for other elec-
trostatic lenses.
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